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I derive the Kolmogorov exponents for the energy spectrum of freely-decaying, 
fully-developed, near-incompressible turbulence, using the methods of pertur- 
bative quantum field theory. In contrast to the approach involving Gaussian 
random forces, the leading-order result is determined uniquely through self- 
consistency. At the first order in e, I find a unique and nontrivial, IR (infrared) 
stable fixed-line. I show that the upper critical dimension of this system is 6, and 
E ( k ) ~ k  2 in 3 dimensions and E ( k ) ~ k  3 in 2 dimensions along this non- 
trivial fixed-line (at the one-loop level). 
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1. I N T R O D U C T I O N  

An outstanding problem in many-body physics is to find an analytical 
derivation of the scaling behavior of fully-developed turbulence. The 
universal scaling exponents in the inertial range have been checked 
experimentally for a large variety of turbulent flows. The Kolmogorov 
law has been confirmed experimentally in fluid and gas shear flow, in 
turbulence behind a grid, and in atmospheric boundary layers/1) It is 
commonly accepted in the fluid community that, in the Kolmogorov 
inertial range, E ( k ) ~ k  -5/3-B (with B,~0.17 the so-called intermittency 
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exponent (2)) in 3 dimensions and E(k)~k  3 in 2 dimensions. (3'4) Here, 
E(k) is defined by (v(x, t) v(x, t) ) =-S~ E(k) dk. It is implicitly assumed 
that the state is quasistationary in the region of fully-developed turbulence, 
and therefore the equal-time correlation functions are approximately time 
independent. 

After the initial success of the renormalization-group (RG) technique 
in explaining the scaling behavior of the dynamics of the second-order 
phase transition, many authors attempted to apply the same methods to 
derive the scaling exponents in the fully-developed turbulence. (5-7) Unfor- 
tunately, within the limits set by the renormalizability of the theory, the 
derived exponent strongly depends on the scaling form of the assumed 
force force correlation function. (5) This seems to contradict the observed 
universality of the Kolmogorov exponent: the scaling exponent of the 
equal-time velocity-velocity correlation function in the fully-developed 
turbulence region seems to be identical for widely different experimental 
situations.(1) 

Physically, one can understand the reason for the failure of the above 
approach as follows. In the critical dynamics, we study the equations of 
motion of the order parameters when the system is slightly out of equi- 
librium. By the fluctuation-dissipation theorem, the amplitude of the 
thermal random force has to be related to the dissipative part of the system 
in order for the system to reach thermal equilibrium in the long-time limit. 
Mathematically, this manifests itself as the fact that the operator dimen- 
sionality of the order-parameter field will depend on the assumed scaling 
form of the "thermal" force. Physically, what has been done is to put the 
external thermal force and the dissipative part of the equation on the same 
footing (as required by the fluctuation-dissipation theorem). One then 
treats the nonlinear part of the equation as a perturbation within the 
framework of the e expansion. The form of the correlation function of the 
thermal force plays an important role here, because it determines the "way" 
the system is brought back to thermal equilibrium. 

However, the physics of fully-developed turbulence is believed to be 
dominated by the nonlinear part in comparison to the viscous-dissipative 
part of the equation. There is no physical reason to introduce an external 
agent into the problem. Any randomness in the flow field is due to the 
intrinsic instability of the equations of motion, not an external random 
force field. What has been done in the literature is to study the Gaussian- 
randomly forced Navier-Stokes equation. As explained in the previous 
paragraph, this approach puts the viscous-dissipative part and the 
arbitrarily-chosen random force on an equal footing. Together, they 
determine the zeroth-order propagator. Since the form of the zeroth-order 
propagator is determined by the form of the external force one chooses, 
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one should not be surprised by the fact that "what comes out depends on 
what goes in." 

In this article I shall present an alternative approach, using pertur- 
bative quantum field theory. I shall address the question of the scaling 
behavior of freely-decaying, fully-developed, and near-incompressible 
turbulence, without introducing an external arbitrarily-chosen random 
force. (This may also be construed as the statement that the renormalized 
force amplitude has been properly tuned to zero. (8)) At the one-loop level, 
I shall present evidence that the upper critical dimension of this system is 
6, via the existence of a unique, infrared (IR) stable, and nontrivial fixed- 
line. I shall then show that, along this nontrivial fixed-line, E ( k ) , . ~ k  -2 in 
3 dimensions and E ( k ) ~  k 3 in 2 dimensions. Hence, without any ad hoc 

assumptions, I have calculated two independent exponents to within 10% 
of the best available experimental measurements. 

2. F O R M U L A T I O N  OF THE THEORY 

It is a common belief that the apparent chaotic and intermittent flow 
patterns of the fully-developed turbulence result from the nonlinear interac- 
tion between different Fourier modes of the velocity field. This nonlinear 
interaction comes from the nonlinear terms in the equations of motion. 
Hence, we will focus our study on the effects of the nonlinear interaction 
in the equations of motion. The simplest model is the classical one-compo- 
nent fluid (i.e., a fluid with one molecular species) without long-range 
interaction. We will neglect complications due to temperature gradients, 
chemical potential differentials, external force fields, and quantum effects. 
The state of the fluid is then uniquely determined by the velocity field, the 
density field, and the pressure field. The equations of motion of the fluid 
are consequences of the momentum and mass conservation lawsCg): 

Ot (pv~) - ~3x~ (2.1) 

-~Pt + V. (pv) = 0 (2.2) 

where p is the density of the fluid; v is the velocity field; and H ~  is the 
momentum flux density tensor. Following Landau and Lifshitz, ~9) we write 
the momentum flux density tensor for a viscous fluid in the form 

H ~  = P 6 ~  + pv~v B - a'~ 

where P is the pressure and a'~p is the viscosity stress tensor. 

(2.3) 
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The most general form of ~'=~ can be established as follows. (9) We 
know that the internal friction occurs in a fluid only when there are 
velocity differentials between different parts of the fluid. Since there is no 
long-range force in the fluid, the stress tensor must be local. Furthermore, 
all the basic fields are locally "coarse-grained" quantities. The equations of 
motion must contain only terms that are analytic in the basic fields. This 
is the fundamental assumption of locality and analyticity. The lowest-order 
terms (in gradients and in velocity fields) of ~r'~e are of the following form: 

/Cv~ Ov a 2 CvT\ Cv~ 
(2.4) 

where q > 0 and f > 0 are coefficients of viscosity. 
By the same reasoning, the coefficients of viscosity, namely t/ and ~, 

are local and analytical functions of p and v. As will become clear later, it 
is sufficient to keep just the constant pieces in this expansion. Higher-order 
terms (in gradients, p, and v) will turn out to be IR irrelevant, as far as the 
scaling exponents are concerned. Then Eq. (2.1) becomes 

P \ Ot +v~O~v~ = - - ~ P q - 0 0 2 v : ~ + ( ~ # v B  (2.5) 

where F/and ( a r e  constants. 
We will focus our study on the case where the fluid is near-incom- 

pressible. This is indeed the situation where all experimental measurements 
are carried out. We write p = Po + 6p and denote fi = 6p/po. Here Po is a 
constant throughout the space-time. Then Eqs. (2.1) and (2.2) become 

+ + , j ) Ot \ Ct + v~Cev~ = - - - -  

~t + 8~v~ + 8~(#v~) = 0 

C=P+ (1 C2v~+f-a~O~va (2.6) 
Po Po Po 

(2.7) 

We have to close Eqs. (2.6) and (2.7) by expressing P as a function of 
p and v. Again, the guiding principle in this expansion is the requirement 
of locality and analyticity. The fact that P is a Galilean scalar implies that 
the lowest-order terms in the expansion look like 

P ~ c l p + c 2 C B v  ~+ ...  (2.8) 

where cl and ca are constants. The strategy will be to show, later, that all 
higher-order terms in this expansion are IR irrelevant in the RG sense. 
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Let us denote Vo-O/Po and bo = ( ( -c2) /0 .  Obviously, we must have 
Vo ~> 0 and b0 >~ 0, because they are the coefficients of viscosity. Hence, the 
set of equations that we have to study is 

/ ~?v ~ ) 1 
NS[v~, t~] = Vo 0t Vo Vo 

CI 
-] - - -  ~ p  --  ~ 2Vct --  bo~eO flv ~ ~- 0 (2.9) 

V0 

% 
C O N [ v ,  p ]  - ~ -  + (?~v~ + 0~(t~v~) = 0 (2.10) 

The symbol NS reminds us that they are the Navier-Stokes equations, and 
CON reminds us that it is the equation of continuity (from the mass 
conservation law). 

3. RENORMALIZATION GROUP CALCULATION 

We will average over all solutions ofNS[v~, ~] = 0 and CON[v, fi] = 0 
with equal weight and impose the condition that <v~>=0. This theo- 
retical formulation is modeled after the freely-decaying turbulence 
experiments. (3'1~ In the freely-decaying grid-turbulence experiment, one 
shakes the grid vigorously to ensure that the fluid is in the fully-developed 
turbulence region. At t = 0, the grid oscillation is turned off suddenly. One 
observes that within a short time, the flow pattern becomes rather 
homogeneous. One makes repeated measurements and computes the time 
average to obtain the "statistical properties" of the freely-decaying 
turbulence. For the two-point correlation function, one is measuring the 
following quantity: 

1 i v~(r, Tl+nAt )  v~(r', T l+nAt )  (3.1) 
n = 0  

T 2 - T 1 
U = - -  (3.2) 

At 

where T~ is the beginning and T2 is the end of the time interval when the 
measurements are carried out. At is the time span between two successive 
measurements. One can also interpret the above as the ensemble average 
with equal weight: v~(r, T~+iAt) is the c~th-component velocity field 
configuration after time T~ from the ith "initial" condition, where the ith 
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"initial" condition is the field configuration at time t = iA t. One also notices 
that there is no mean flow in this experiment: ( v~ )=0 .  

One might object that the ith and (i+ 1)th "initial" conditions are 
related through the equations of motion. The crucial point to bear in mind, 
however, is that (from numerous experiments) the leading scaling exponent 
of the velocity-velocity correlation function in the fully-developed tur- 
bulence seems to be independent of the initial preparations. Hence, we can 
equate the time average with the ensemble average. Since the averaging 
procedure is linear, we should be able to compute the correct leading 
scaling exponent by averaging over all solutions of NS[v~, ~] = 0  and 
CON[v, ~] = 0  with equal weight and look for the stationary state with 
<v~> =0. In a sense, we are assuming universality from the experimental 
evidence. 

The generating functional of all physical correlation functions can be 
written symbolically as 

Z [ l , J ] -  Z exp{lv~o,+J~so,} 
Vsol, ,Osol 

- ~ f~v~pf(V-Vso,)6( f i - -P~oOexp{lv+JP} 
Vsol, Psol 

- f ~v @fi 6(V2"NS) cS(CON) J[v, ~] exP{lv + J/}} (3.3) 

w h e r e  Vso 1 and 6sol denote solutions of NS[v~, iS] = 0 and CON[v, ~] = 0. 
Here J[v, r is the functional Jacobian coming from the argument of the 
6 function(m: 

6(V2"NS) 6(CON) 

6(NS) 6(CON) 
- det IV2"l = 

Vsol, Psol 

F~[v]-NS[v~,~]------  

6 ( v -  Vso0 a(6 - 6sol) 
J[v, P] det IV2"l (3.4) 

1 ~?v~ 
Vo 0t (3.6) 

In Eq. (3.5), a denotes the underlying "lattice cutoff." The presence of the 
lattice cutoff will be explained shortly. Since we are going to use dimen- 
sional regularization throughout this article, we can drop contributions 
from J[v, ~] entirely/12) The reason is that the factor a -d can be written 
as (1/2re)~A ddq, which vanishes if dimensionally regularized. (15) (Here, the 
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presence of the upper momentum cutoff A accounts for the underlying 
lattice structure.) This is similar to the disposal of the interactions 
induced by the measure in the nonlinear sigma model regularized by the 
dimensional regularization. 

Let us now explain the reason for considering solutions of V Z n N S  = 0, 

instead of NS = 0. We know from experimental observation that there are 
"eddies within eddies" and intermittency effects in the fully-developed tur- 
bulence. This suggests that the appropriate focus of study might not be the 
velocity field itself, but higher-order spatial derivatives of the velocity field. 
Here, we propose the following ansatz: We should study the following 
equations: V2nNSEv~,/~]=0 and CONEv, /~]=0,  where n = 0 , 1 , 2  ..... 
However, one has to show that in considering V Z n N S  = 0, one does not 
introduce additional field configurations that are not solutions of the 
original equations of motion. One notices that, since we impose the spatial 
boundary condition that all fields vanish at spatial infinity, NSEv~,/~] = 0 
is always true at the spatial infinity. Hence, V z n N S E v ~ , / ~ ]  = 0 has only one 
solution, namely NS[v~, ff] = 0 at all space-time points. The unique choice 
of n will become clear in Section 4. 

One might ask: Why should we consider different choices of n if 
mathematically they have no effect when the problem are treated exactly? 
The point is that we cannot solve the problem exactly. The best one can 
do is to construct the theory perturbatively. Then, different choices of n 
produce different answers because the expansion points for the perturba- 
tion theories are different. One expects that proper physical consideration 
will guide us to the correct expansion point. Indeed, one of the major 
contributions of this article is to show how the requirement of locality, 
analyticity, and renormalizability will restrict the possible choices of n to a 
few finite numbers. 

More specifically, the generating functional of all physical correlation 
functions in real-space is 

ZEl(x, t), J(x, t)] 

d 

- f [ ~ ( x ,  t)][~a'(x, t)] ~ [~v~(x, t)]E~'~(x, t ) ]  
a = l  

x exp d~• dt[l~(x, t) v~(x, t) + J(x, t) ~(x, t)] 

xexp{-ifaddxdt[()'~(x,t)V2nNS[v~,~d]+d'(x,t)CON[v,P]] } 

(3.7) 
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In writing Eq. (3.7), we have used the Fourier functional-integral represen- 
tation of the 6 function: 

d 

[[ [I ~(V2nNSEv~, #])6(CON[v, #]) 
a = l  x , t  

d 

- J [~p(x, t)]E~a'(x, t)] 
t ~  

13 [~v~(x, t)] [~ '~ (x ,  t)-] 

xexp { - i  fadax dt[~'.(x, t)v:2nNS[v~,/~] + ~'(X, t)CON[v, # ] ] }  

(3.8) 
In Eqs. (3.5), (3.7), and (3.8), we notice that there is a lattice cutoff of the 
order a in the spatial integral. The reason for the underlying lattice cutoff 
is as follows. One knows that the Navier Stokes equation is a "coarse- 
grained" equation of motion. The velocity field loses its meaning at the 
molecular scale. It is a locally averaged quantity of a "fluid element," which 
might consist of hundreds or thousands of molecules. Hence, from the 
physical point of view, there is an intrinsic underlying lattice cutoff, beneath 
which the hydrodynamic description of the fluid becomes invalid. On the 
other hand, one can also regard Eqs. (2.9) and (2.10) as a system of partial 
differential equations per se. Thus, one is not concerned about the lattice 
cutoff, because space and time are continuous. However, we are dealing 
with real physics here. This is the reason for the emphasis on the 
underlying lattice cutoff. This is exactly the same situation as in any other 
physical system studied in condensed matter physics. 

It is easy to see that Eq. (3.7) is equivalent to the following: 

Z[/(x,  t), J(x, t)] 
d 

f [~#(x, t ) ] [~ ' (x ,  t)3 [[  [~v~(x, t ) ] [ ~ ( x ,  t)] 
~ = 1  

x exp {faddx dt[l~(x, t) v~(x, t) + J(x, t) #(x, t)] } 

x exp { - i  fo ddx dt gt(x, t) CON[v, P] } 

x exp { - i  f a ddx dt O~(x' t) V2n [NSEv~' P] + el v~ CON[v' fi] 

(3.9) 

with el some arbitrary constant. Indeed, when one integrates out if' and ~, 
the only configurations of v and # with nonzero contribution to the path 
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integral are those satisfying C ON = 0  and NS + (e,/vo)v~ C O N = 0 .  That 
is, they are solutions of C O N  = 0 and NS = 0. Finally, one concludes that 
Eq. (3.9) is equivalent to 

Z[l(x,  t), J(x, t) l  

d 

- f [~fi(x, t ) ] [ ~ a ( x ,  t)] ]7] [~v~(x, t ) ] [~b~(x ,  t)] 

x exp 

x exp 

f. ddx dt[l~(x, t)v~(x, t )+  J(x, t)/~(X, t ) ]}  

el ]} 
+ - - v ~  CON[v,  ~] 

YO 

+ O~(v~ CON[v,  fi]) 
VO 

x exp { f a ddX dt f ~[v, fi ] NS[v~, fi ] ) 

where e2 is some arbitrary constant andf~[v, fi] and g[v, ~] are some local 
functions of v and ft. 

The reason for introducing these "extra operators" in the action is to 
provide enough counterterms in order to make the theory renormalizable 
when we introduce the source terms for ~ and 6 fields. The renormalized 
coupling constants of these "extra operators" must be zero, because the 
renormalized equations of motion should have the same form as in 
Eqs. (2.9) and (2.10). The situation here is similar to the study of the tri- 
critical point, (~31 where the renormalized coupling constant of S 4 is zero. 
The renormalized nonlinear term now is S 6. However, we still need the 
counterterm for S 4 in the bare level, because S 4 will be generated under 
the renormalization. From now on, we will not write these "extra 
operators" explicitly. However, we have to remember that they are in fact 
present in the counterterm action in order to make the theory renor- 
malizable. One such example is 

~b~V2" [v~ v~c~ v~] (3.11) 
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which is missing in 

~b~V:" NS[G,/5] (3.12) 

but will in general be generated under renormalization. The "extra 
operator" in Eq. (3.11) comes from the factor (el/vo)G CON in Eq. (3.10). 
It differs from the basic nonlinear term v~v~ only in the order of the 
vector indices. 

Let us introduce the sources h= and I for the auxiliary fields ~b~ and 6. 
Since we are interested in translationally-invariant and stationary states, we 
will work in the Fourier space: 

G(x, t)=- f ddk dWG(k, w)exp{ik.x-iwt} 
(2To) d 2To 

G(k, w) - f ddx dt G(x, t) exp{ - ik" x + iwt} 

(3.13) 

(3.14) 

The full generating 
explicitly expressed in the following formulas): 

Z - f  [ ~ ]  [ ~ d ] [ ~ G ] [ ~ b ~ ]  exp{ <<G, l~)) + <<~b~, ha)) 

+ <<~, J>> + <<d, I>>} 
x exp{So(~b, v) + So(O, p) + So(d, ~) + So(6, v)} 

x exp{S+(~b, v, v)+S+(6, ~, v)} 

functional now becomes ("extra operators" are not 

(3.15) 

where 

[ [ ~ ] [ ~ a ] [ ~ v = ] [ ~ G ]  

d 

- f [~tS(k, w)][@d(k, w)] I-I [~G(k,  w)][@~b~(k, w)] (3.15a) 

<<G, l~)) = f ~ dak dw [G(k ' w ) / ~ ( - k , - w ) ]  (3.15b) 
(2g) d 2r~ 

;1 
S0(~b, v) - - i  (2~) a 27c Vo/ 

x 6~ + bok~k~] ~b~(k, w) v~(-k,  - w )  (3.15c) 
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So(O,p)=-c l  ~ 1 ddk dW k2nk~(~a(k, w ) / ) ( - k ,  - w )  (3.15d) 
v0 J (2n) d 2n 

f l  (iw) g(k, w) /~( -k ,  - w )  (3.15e) 
ddk dw 

$o(6, ~) = - i  (2n) ~ 2--~- 

fl  ddk dw 
So(6, v) ==- - i  (2n)d2 n (--ik~)if(k, w) v~( -k ,  - w )  (3.15f) 

S,(q), v, v) - (2re)d+ 1 ~1 
V---'---~ [q2"s,6~] qt~(q, B) v,(r, C) v.r D) (3.15g) 

;1 
SI(6, fi, v) = - (2n) d+ ~ [-q,] 5(q, B) fi(q, B) ~(r, C) v,(s, D) (3.15h) 

~' I~ ddq dB ddr dC dds dD 
= (2X) d 2n (2X) d 2n (27c) d 2n 3~(q + r + s) 

x 3(B + C +  D) (3.15i) 

In the above formulas, ~1 denotes a cutoff of order 1 in momentum space 
generated by the "lattice structure." 

In writing Eq. (3.15), I have neglected some nonlinear terms in 
Eq. (2.9), namely ~/vo(~v~/~t+v~v~). However, as I shall demonstrate 
shortly, these terms will turn out to be IR irrelevant in the RG sense. In 
next few paragraphs, I shall also explain how the requirement of locality, 
analyticity, and renormalizability places a constraint on the choice of n. 

In writing down the equations of motions, namely Eqs. (2.9) and 
(2.10), we have been guided by the requirements of locality, analyticity, 
and Galilean invariance. Besides these requirements, however, the require- 
ment of renormalizability places a strong constraint on the perturbative 
construction of the theory. It is observed that, regardless of the microscopic 
structure, the large-scale (in contrast to the molecular-scale) flow pattern of 
all fluids can be described by the same Navier-Stokes equation in terms of 
a few effective parameters relevant to the scale of observation. It is easy to 
see that the IR physics can be described by renormalizable theories, 
because the effects of nonrenormalizable terms are suppressed by the 
powers of the lattice cutoff. Renormalizable theories are short-distance- 
insensitive in the sense that they can be described in terms of a finite num- 
ber of effective parameters relevant to the scale of observation without 
a detailed knowledge of the microscopic structure. Thus, a consistent 
approach to the scaling behavior of turbulence should be based on a renor- 
malizable local field theory. 

At this stage, the operator dimensionalities of the v field and the dO 
field are indeterminate. However, it is easy to see that the linear part of the 
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equations of motion of the d0 field is identical to that of the v field. [The 
equations of motion of the d~ field are obtained by differentiating the action 
in Eq. (3.15) with respect to the v field.] Hence, without loss of generality, 
we can assume that they are the same. It is, then, easy to see that 
[-v(x, t)] -= [~b(x, t)]  = A a/2 n. From the discussion in Section 2, we know 
that Eqs. (2.9) and (2.10) are only approximate equations. The viscous 
force contains terms besides ~?Ov. By power-counting (and because of the 
requirement of Galilean invariance), one finds that the most potentially IR 
important terms are of the following form: V I--[li_l (Vc~il)[~i) with I>~2. The 
coefficients of these terms, in the continuum limit, will scale as 
{A n-  1 a/2}t-1. Hence, if we require that these higher-order viscous terms 
be IR irrelevant both in 2 and 3 dimensions, we must restrict the choice of 
n to n = {0, 1, 2}. Different choices of n correspond to different expansion 
points of the perturbation theory. In Section 4, we shall see that, at the 
one-loop level, the presence o f  a stable infrared physics uniquely determines 
n to be 2. 

Next, we have to determine the operator dimensionality of /3, and 
hence that of 6. We choose [~(x, t)]  = A d/2 n+ ~ and [6(x, t)]  = A ~/2 +n-1 
In Appendix A, we demonstrate why this is the only choice. With all field 
operator dimensionalities determined, it is easy to see that the coefficients 
of (~/Vo)Ov~/~t and (~ /Vo)va~v~  will scale in the continuum limit as 
A n 1-a/2 and A 2n-d, respectively. Since we have n ~ 2 and d>~ 2, these two 
nonlinear terms are indeed IR irrelevant. The basic nonlinear term in the 
problem is v~O~v~, whose coefficient in the continuum limit scales as 
An+ l cl/2 

We are now ready to map the theory with a curoff into a continuum 
field theory. (14) We are interested in the hydrodynamic, i.e., IR (with 
respect to the underlying lattice cutoff) behavior of the fluid. Following 
Brezin, Le Guillou, and Zinn-Justin (see ref. 14), we approach the 
hydrodynamic limit by keeping al ,  k' finite while letting A--* oe in the 
following rescaling: 

alk' 
k--- A ' a l > 0  (3.16) 

We also rescale the time and all fields accordingly in order to obtain a non- 
trivial field theory: 

V = ~V'; ~b ---- t/d0'; ~ =- a3/}'; (~ ~- a4~' (3.17) 

a2w' 
w = A 2 ,  a 2 > 0  (3.18) 
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Then, in the primed coordinate system, with proper choices of ~ and q, the 
coupling constant of the nonlinear term will diverge as A --, oQ. However, 
this divergence of the coupling constant will cancel the divergence from the 
Feynman integrals in the perturbation series. The end result is a finite, 
renormalized theory. (14) 

The choices of ( and r/ are, to a degree, arbitrary. Since we have 
assumed that the operator dimensionalities of the v field and the ~ field are 
the same, we can set ~ = t 1. In order to fix the form of the free propagator, 
we fix the coefficients of the following terms to be - i ,  - 1 ,  and a2/(a~vo), 
respectively: 

f dd____kk d~ k2" + zOo(k, w) v~( -k ,  - w) (3.19) 
(2~z) d 2re 

f ddk dWk2"k~C~(k, w) /5 ( -k ,  - w )  (3.20) 
(2~) d 2~ 

f da_~k dw wd(k, w) /5 ( -k ,  - w )  (3.21) 
(2~) d 2~ 

Then, the continuum bare theory of Eq. (3.15) is 

( ,  

Z 

• exp{ CVo~, to~>) + r162 no,)) + CPo, do)) + Cdo, 1o))} 

x exp{So(r Vo) + So(Co,/5o) + So(do,/5o) + So(do, Vo)} 

x exp{S/(Co, Vo, Vo) + S,(do,/5o, Vo)} (3.22) 

where 

f [,~Po] [~ao2 E~'~o~3 E~Co,~] 
d 

= f [-@,do(k, w)]E~do(k, w)] ~ [~Vo~(k, w)][~o~(k, w)] (3.22a) 

((Vow, 1o~))_ f ddk dw (2re) d 2re [v~ w) lo~ ( - k ,  - w ) ]  (3.22b) 

So(Co, v o ) - - i f  ddk dWk2n k 2 +  6~a+bok~kf~ 
(2re) d 2re Vo/ 

x Co~(k, w) Vo~(-k, - w )  (3.22c) 
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S o ( ~ b o , ~ o ) - - f  ddk dWkznk~Oo~(k,w)~o(-k,-w) (3.22d) 
(27z) d 2~ 

So(~o, Po)=- i f  dak dW[MiWJ~o(k,w) Po( -k , -w  ) (3.22e) 
(2re) d2rc L Vo/ 

So(do, Vo)=--KA2 f dek dW k~do(k,w) vo~(-k,-w) (3.22f) 
(2re) d 27r 

(2re)a+ 1 
Si(Oo, Vo, Vo) =- - -  NA n+l-d/2 [qZns~6=y] ~bo~(q, B) 

Vo 

x Vo~(r, C) roy(S, D) (3.22g) 

S,(~o, Po, v o ) -  (27r)a+~ NA,+ 1 d/2 i [q~] ~o(q, B) 
Vo 

• ~o(r, C) roT(S, D) (3.22h) 

In the above equations, M-a2/a 2, N="a/2- ~1 n-2,,~/z~= , and K~voZClal 2. 
The subscript 0 denotes bare quantities. We have dropped the primed nota- 
tion, even though we are now in the primed coordinate system. 5 is the 
same as in Eq. (3.15i), but with the upper momentum cutoff of order A. We 
obtain the continuum field theory by letting A --* oo. The A --* oe limit will 
always be understood, but we shall not indicate this explicitly on every 
occasion. 

Before we proceed to write down the perturbation theory for 
Eq. (3.22), we would like to point out some generic technical difficulty of 
the current formulation of the theory. This is easily illustrated in the 
following example. Let us consider some arbitrary classical equation of 
motion for the v field: 

Kv + V(v) = 0 (3.23) 

where K is some invertible linear operator and V(v) denotes all nonlinear 
terms of the v field. If we average over all solutions of Eq. (3.23) with equal 
weight, then the generating functional of all correlation functions is: 

z = f  [~q~][~v]exp{flv+fh(~}exp{-f  i~b[Kv+V(v,]} 

__ox  exp } 

It is easy to see that ( vv ) -  (62/~/2) Zll=h=o=O, because each vertex in 
V[6/6l] brings down too many powers of h, which cannot be canceled by 
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a single differentiation of 6/6h. The same conclusion holds for all other 
physical correlation functions (or moments) of the v field. On the other 
hand, physical intuition tells us that, for complex nonlinear equations, 
there exist nontrivial results. Obviously, we cannot proceed with the 
perturbation theory naively as written in Eq. (3.22). We have to shift the 
field to locate the proper expansion point. 

In order to find a nontrivial expansion point consistently, we find it 
convenient to use 2, as defined in the following. The reasons for this will 
become clear momentarily: 

t" 2 - J [~ro]  [~ao]  [~Vo~] [ ~ o ~ ]  

x exp {((Vo~ +~bo=, lo~))+ ((~o~,ho~))+((fio, Jo))+ ((4o, to))} 

x exp{So(~bo, Vo)+ So(~bo, rio)+ So(do, rio)+ So(do, Vo)} 

x exp{Sl(~bo, Vo, Vo)+ S,(6o, rio, %)} (3.25) 

The only difference between Eq. (3.25) and Eq. (3.22) is the source term. 
One can regard Eq. (3.25) as an Ansatz, which, in contrast to Eq. (3.24), 
will generate a nontrivial perturbation theory. The purpose of considering 
this "shifted" new theory will become clear shortly--it is possible to shift 
in this manner because the operator dimensionalities of v and 0p fields are 
the same. 

Using the results in Appendix B and C, and after some tedious 
algebra, it is possible to rewrite 2 in the following way: 

2 -  f [~Po][mao][~UoA[~OoA 

x exp{ <<Uo~, los>) + <<~bo~, ho~)) + <<Po, Jo)> + (<6o, Io))} 

x exp {So(~,bo, ~bo) + So(~bo, Uo) + So(~,bo, rio) 

- / ~ o ) }  + So(ao, rio) + So (ao, Uo 

x exp {S,(~bo, Uo, Uo) + S~(~bo, ~bo, Uo) + S1(~bo, ~,bo, ~bo) 

;0o)} + S~ @o, rio, Uo - (3.26) 

822/65/1-2-2 
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One can show that there is one-to-one correspondence between Feynman 
graphs of Eqs. (3.25) and (3.26). One also notices that Uo~(X, t) is a real 
field, not equal to Vo~(X, t )+ (//2)~bo~(X, t), even though the relation is 
highly suggestive. In Eq. (3.26), we have used the following symbols: 

[( ;w) ] 
(2n) d 2n + 6~ + bok~k~ 

x ~bo=(k, w) ~bo~ ( - k ,  - w )  (3.26a) 

x ~bo=(k, w) Uo~(-k, -w)  (3.26b) 

So(q}o, Po)- - f  ddk dw k2,k=~bo~(k, w) r - w )  (3.26c) 
(2n) a 2n 

[iw] ddk dw Z~ T do(k,w) So(do, Po)-  - i  (2n) d 2n 

x Po( - k, - w) (3.26d) 

( i ddk dw ~ 
So ~bo)- -mo J (~ )a  ~ k~ao(k, w) \~o, Uo-~ 

i k - •  , w) 1 (3.26e) 

;K~r~bo~(q, B) C) D) (3.26f) go S,(~bo, Uo, Uo) - - ~ Uo~(r, Uo~(S, 

go f/~o~(q, B) S,(~bo, ~bo, Uo)- 2(2!) 

x ~bo~(r, C) UoT(S, D) (3.26g) 

go ;M~bo~(q,  B) S/(~bo, ~bo, ~bo)- 4(3!) 

x ~bo#(r, C) ~boT(S, D) (3.26h) 

S, do, Po, Uo-~bo = - g o  [-q~]do(q,B) Do(r,C) 

X [Uo~(s, D)-~ (~or(s, D)l (3.26i) 
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In the above equations, M / v o - Z , / v ,  [(2~z)d+l/v0] N A  ~+1 d/2=--g o, and 
K A  2 - mo.  

In order to write down the Feynman rules in the momentum space, we 
have symmetrized the interaction vertices: 

K~n7 - -- q2nsfl~)ay -- q 2 " r y 6 ~  (3.27) 

L~/s.~ = iq 2"s# 6 ~ + iq 2"r,~ 6 ~ + ir 2"s, 6 n,y + ir 2"q~ c5 ~n ( 3.28 ) 

M~fl7 =- (q2nsl~ + s2nqfl) 2)~ + (r2ns~ + s2nr~) ~fl~ + (q2~ry + r2"q~) 6 ~  (3.29) 

The main reason for considering the new theory Z is as follows. Let 
us denote the original theory Z, i.e., Eq. (3.22), by subscript 1 and the new 
theory Z, i.e., Eq. (3.25) or Eq. (3.26), by subscript 2. It is obvious that 

( VoVo ) ~ - ( Uo~o " - -  l~/o~0 --  4~0~0 )2  (3 .30)  

(~boq~o}~ = (~bo~bo }: (3.31) 

Using these two relations, one can unambiguously identify the leading IR 
scaling behavior of the velocity-velocity correlation function once we 
locate the IR stable fixed point in the theory Z. It is possible to verify that 
the right-hand side of Eq. (3.30) is nonzero, order by order in the coupling 
constants. 

The inductive proof of the multiplicative renormalizability of 
Eq. (3.26) is quite involved and will not be elaborated here. Suffice it to say 
that one can follow the usual Zimmermann's forest-formula (15) for this 
theory as well. Let us introduce the following set of wave-function renor- 
realization constants: 

u0~(k, w) - Z1/2u~(k,  w); 

~bo~(k, w) -= Z~/2~b~(k, w); 

rio(k, w) =- Ztp/2~(k, w); 

~o(k, w )  - z l /2~(k ,  w); 

/o~(k, w) - Z -~/2/~(k, w) (3.32) 

h0~(k, w) = Z ~  l/2h~(k, w) (3.33) 

Jo(k, w)=-z pl/2J(k, w) (3.34) 

Io(k, w) - Z~-1/21(k, w) (3.35) 

From the general structure of the free propagators in Appendix C, one 
can see that calculation in this field theory is very complicated. In order to 
simplify this presentation, we concentrate on the "critical" theory. The 
renormalized coupling constants m and f (in Appendix C) have a dimen- 
sion of A 2. They will set a length scale in the problem. Since we are looking 
for the critical theory, we set m = f = 0 .  The renormalized b and e (in 
Appendix C) are dimensionless. However, they are related to the ratio of 
the second viscosity coefficient to the first viscosity coefficient. Since we are 
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interested in fully-developed turbulence, where the nonlinear term 
dominates the viscous-dissipative term, it is physically more satisfying to 
set b = e = 0. It is not clear whether there are other fixed points with non- 
zero values of b and e, nor is it clear what their physical significance would 
be. 

Based on the above considerations, we have the following four free 
propagators in the "critical" theory: 

( - i )  kc, l~ , ( -k ,  - w )  I(k, w). I(k, w ) J ( - k ,  - w )  

(k 2 _ iw/v)(w/v + it/+ ) ' w/v + it I + 

(-i) h (k, w) -w). 1 1 (k, 
k2~(k 2 -  iw/v) ' 2 k 2" 2(k4 + w2/v z) 

(3.36) 

(3.37) 

The r/+ prescription for the w-integration is explained in Appendix C. 
From the structure of the above free propagators in the "critical" 

theory, we conclude that the vertices in the last term of Eq. (3.26), namely 
$i(~o, Po, Uo-�89 do not play a role in determining the wave-function 
renormalization of the u and ~ fields. It is also clear that each loop integra- 
tion will contribute a v factor from the frequency integration. Let L denote 
the number of loops; I denotes the number of internal lines; E denotes the 
number of external points; and n3 denotes the number of vertices. From 
L = I -  (n3 - 1 ) and I =  �89 - E), we obtain L = n3/2 + (1 - El2). Hence, 
if we denote the renormalized coefficients of the nonlinear terms as gi/x/-v, 
the dependence of n-point Green's functions, GN, o n  V will be through the 
combination w/v and an overall multiplicative factor v 1 u/2. Here, we 
denote gl,  g2, and g3 as the renormalized coupling constants for the 
vertices denoted by K~p~, L~e~, and M ~ ,  respectively, in Eq. (3.26). 

Let us concentrate on the 2-point Green's function. The renormaliza- 
tion group equation for G 2 is 

k;v,g,,# =0 (3.38) 

where G2 is the 2-point Green's function of the u field. If we were to con- 
sider the 2-point Green's function of the ~b field, we would just replace 7 by 
~0 in the above equation. Here, # is the usual "unit of mass,"/3 s - /~  dgs/d #, 
7v = - #  d in  Zv/d#, 7 = # d in  Z/d#,  and 70 = # d in  Zo/d#. Since there is no 
multiplicative prefactor of v for Gz, we can rewrite Eq. (3.38) as 

 339, 
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At the fixed points {g*} where {/~,(g*)=0}, the most general 
solution of Eq. (3.39) is 

W = k "  w 

with F2 some unknown function of three variables. It is, easy to show that 

f 
ox? 

~ k  d-5+Ta ~Vl-~~ dxF2(1;x, g*) 
- - o 0  

(3.41) 

where 7a = 7, or 70, or 1/2(7 + 70), depending on the degree of singularity 
of the leading scaling behavior of <uu>, or <q~b>, or <u~b> at the fixed 
points. This is easily seen from Eq. (3.30). 

4. ONE-LOOP RESULTS 

From Appendix C, it is easily seen that some free propagators are 
"directional" in the w-space. This is true even if we are not considering 
the "critical" theory. As a consequence, some loops vanish due to the 
w-integration, even though the power-counting indicates that they are 
divergent. Detailed analysis also shows that the 2-point function <~b~b> 
vanishes to all orders in the coupling constants. 

We have already learned from Section 3 that the requirement of renor- 
malizability constrains n to be 0, 1, or 2. If n = 0, the upper critical dimen- 
sion of the system will be 2. However, this would mean that at 3 dimen- 
sions, the nonlinear term is unimportant and irrelevant. This contradicts 
the experimental evidence. Obviously, we are expanding around the wrong 
expansion point in this case. Hence, the possibility that n = 0 is ruled out. 

Next, let us consider the case with n = 1. Using dimensional regulariza- 
tion and minimal subtraction, I find, at the one-loop level, the following 
dimensional poles of the self-energy (for the "critical" theory): 

1 1 1 3 3 ]  Z(~b - ~b) ~ (4~)---5. ~ �9 6~q 4 - ~ g2 + 5 gl g2 (4.1) 

[ 3 1  i 1.6:~,q4 _ ~ g~+ (4.2) 
- ( 4 , 0  gL g2 
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In Appendix D, I list all the integrals appearing in the one-loop calculation. 
It is, then, easy to see that the wave-function renormalization constants, at 
the one-loop level, are 

1 1 [  3 2 3  ] 
- -  (4.3) Z~ ~ 1 -t- (4rC)2 s 

1 1 1 3 5 ]  _ _ . _ .  _ 

Z ~  1 + (4rc)2 e 8 g (4.4) 

Z ~ l + ( 4 r r ) 2 "  ~" g l - ~ g l g 2  (4.5) 

At the one-loop level, the dimensional poles of the vertex correction 
magically cancel out. After some simple algebra, we obtain the following 
//-functions: 

1 1-3 3 3 2 ] 
(4.6) 

]~2,'~ - ~ g2 + - ~ g l g 2 - ~ g l g ~  

e 1 1 3  15 ] f13 ~ - 5 g3-t-(~g)2 g g~ g 3 - - y  gl g2g3 

(4.7) 

(4.8) 

The fixed points of Eqs. (4.6)-(4.8) are 

gl = g2 = g3 = 0 

g l =  _+4r~(~---~e) 1/2, g 2 = O ,  g3 arbitrary 

(4.9) 

(4.10) 

Unfortunately, none of these fixed points is IR stable. From 
Eqs. (3.26f)-(3.26h) we have go1 = 2go2 = 4go3 > 0. Then g~, g2, and g3 will 
be in the same region of the (g~, g2, g3) space. Numerical integration of 
the B-functions indicates that with gl(~to) ~ 2g2(#o) ~ 4g3(#o) > 0, g2 will 
always grow in an unbounded manner in the IR limit. The flow diagram 
near the gl axis in the (gl, g2) plane bears some resemblance to that of the 
scalar electrodynamics. (16) Hence, there is no nontrivial IR stable fixed point. 
At the one-loop level, therefore, we have to rule out the possible choice of 
n = l .  Figure 1 presents a typical /~-function flow pattern in the 
(gl, g2)plane near the unstable fixed point in Eq. (4.10). 
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Fig. 1. ~-function flow for the case with n = 1 (and e = 1). 

Finally, we consider the case of n = 2. With  n = 2, the upper  critical 
d imension of the system is de = 6. Using dimensional regularization and 
minimal subtraction, I find, at the one- loop level, the following dimensional  
poles of  the self-energy (for the "critical" theory):  

1 1 1 5 5 ]  
S ( r 1 6 2  3 e c]~/~q 6 - -dg ,  g2+-dglg 3 (4.11) 

z ' ( r  ~ 6~q 6 - g~+i-~glg 2 (4.12) 

The  corresponding wave-funct ion renormal iza t ion  constants  are 

z o ~ l + (4rc)---5 �9 7 '  - 6 g t g2 + g g l g3 (4.13) 

1 1 g ~ + ~ g l g 2 - g g l g 3  (4.14) 
Z , ~  1 + (4rc)3-~. - 

1 1 [~_~g2 5 g l g 2 ]  (4.15) / v  ~' 1 + (4/Z)3 

Again, at  the one- loop  level, the d imensional  poles of the vertex correct ion 
vanish. The / / - func t ions  are then given by 
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fll ~ - -~ g~ + (-~)3 g ~ - - ~  g~ g2 +-~ gZ g3 (4.16) 

e 1 5 5 2 _~g lgzg  3 (4.17) f 1 2 ~ - - ~ g 2 + ( - ~ ) 3  ~ g ~ g 2 + ' ~ g l  g2 

1 [ ~8 35 5 2] (4.18) fi3 ~ - ~  g3 + (-~)3 - g~g3+~-~g~g2g3-~g~g3 

The zeros of the above equations consist of two isolated fixed points and 
a fixed line: 

gl = g2 = g3 = 0 (4.19) 

gl = -q- (4g) 3 , g2 = g3 = 0 (4.20) 

Ia2 + 1~(47z)3] 1/2, 5a+  [a2+18e(4rc)3/5] 1/2 
gl =a__ - - g2 = -- 

g3=a, a~N (4.21) 

The fixed points in Eqs. (4.19) and (4.20) have at least two negative 
eigenvalues. They are, therefore, IR unstable. At the fixed points of 
Eq. (4.21), the derivative of the fl-functions has two positive (for small a) 
and one flat direction. One has to numerically integrate the fl-functions to 
determine whether the coupling constants corresponding to the physical 
theory will be attracted to this fixed line. We have tested that, for 
gl(#o),,~2g2(#o)~4g3(lto)>O, and g3(#o) arbitrary, the flow of the 
coupling constants is always toward the fixed line in Eq. (4.21) in the 
IR limit. Hence, the physical theory is indeed attracted toward the fixed line. 
It is also easy to check that when a > ac ,,~ 29.88 ~ - ,  one of the eigenvalues 
of the fixed points in Eq. (4.21) will become negative. Therefore, the 
physically accessible fixed points are restricted to 0 <  a <ac~29 .88 , , /7 .  
This is consistent within the framework of the e expansion: at the one-loop 
level, the fixed-point value of the coupling constant is of the order of e. (We 
are considering a theory similar to ~b 3, and therefore the fixed-point value 
of the coupling constant is of the order of ,,/-~.) 

Along the fixed line of Eq. (4.21), we have 

 [ 425 5 ] 7-- Yv ~ (47t)3 gl- -~glg2-k-gglg3 = 0  (4.22) 

1 
7~ -- 7v ~ (-~)3 [ - 5  2gl +~5 gl g2--~5 gl g3] = 0 (4.23) 
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From Eq. (3.41), we obtain 

E(k) ~ k-2 

E ( k ) ~ k  3 

23 

in 3 dimensions (4.24) 

in 2 dimensions (4.25) 

I would like to emphasize that the above scaling behavior is at the 
nontrivialfixed line, where the renormalized nonlinear terms dominate. The 
fact that there is no "anomalous" dimension at the first order in ~ is a pure 
coincidence. We have a similar situation in ~4 theory. 

5. S U M M A R Y  AND DISCUSSION 

In summary, I have proposed a new approach for calculating the 
scaling exponents of the freely-decaying turbulence. At the one-loop level, 
this approach predicts two independent exponents, to within 10% of the 
best available experimental values. In this approach, one does not have to 
consider separately the energy cascade in 3 dimensions and enstrophy 
cascade in 2 dimensions in order to derive the correct energy spectrum, nor 
does one have to worry about the so-called "intermittency correction. ''(2~ 
Assuming only that all relevant information is contained in the equations 
of motion, and treating these equations consistently from the perspective of 
quantum field theory, one is able to compute all exponents without any ad 
hoc assumptions. 

Even though we have obtained very reasonable answers at the one- 
loop level, there remain some unresolved questions. Does the e expansion 
make sense when the operator dimensionality of the field becomes negative 
(when d<  4 for n = 2)? One encounters the same problem in the Gaussian- 
random-force approach. (5) Will the fixed line in Eq. (4.21) be resolved into 
a fixed point by higher-loop calculations? What will happen to the 
marginal operator corresponding to the zero eigenvalue in Eq. (4.21)? A 
much harder problem is the Borel summability of the ~ expansion. I hope 
this article will stimulate further interest in these problems. 

APPENDIX A 

Looking back at the quadratic part of Eq. (3.15), one realizes that 
there are two other possible choices of the operator dimensionalities for the 

and 5 fields. We discuss them now. 
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The first one is to set [~(x, t ) ]=A a/2+n+l and [~(x, t)]=-A a/z-n *. 
However, this will result in a nonrenormalizable theory. As discussed in 
Section 2, in the expansion of P in terms of local and analytical functions 
of/5 and v, the following term will appear in the action: 

f dax dt ~b~(x, t) V2n~(/5) m with m >/2 (A1) 

Simple power-counting shows that the coefficient of this term will scale in 
the continuum limit as A 2 + (m- - l ) (n  +1  d/2). This is more IR important than 
the basic nonlinear term kept in the equations of motion, namely 

f ddx dt ~b~(x, t) V2nve~?~v= (A2) 

whose coefficient in the continuum limit only scales as A n +1 d/2. This con- 
tradicts our notion that the turbulence of near-incompressible fluid results 
from the dominance of the v& nonlinear term. Furthermore, with m big 
enough, there are infinitely many relevant terms in the equations of motion. 
This results in a logically inconsistent theory. In fact, the expansion 
adopted in ref. 17 is precisely this one. Even though all these relevant 
operators do not contribute at the first order in e (because they all carry 
to many "legs"), it does not mean that the answer can be trusted. As 
explained in the second paragraph after Eq. (3.15), a consistent approach 
to the scaling behavior of turbulence should be based on a renormalizable 
local field theory. 

The only other possible choice of the operator dimensionalities of/5 
and 8 fields is to set [fi(x, t)] --A d/2-" + 1 and [4(x, t)] - A  a/2+n + 1. Simple 
power-counting indicates that the resulting theory is identical to the incom- 
pressible turbulence. The effect of t5 and 8 fields is to act as the auxiliary 
fields enforcing the incompressibility condition: 0~v~=0 and 8~b~=0. (s) 
However, the renormalization of the incompressible turbulence presents 
many peculiar features. At the first order in e, there is no strong evidence 
in favor of the choice of n = 2 (except the fact that n = 2 fits the experimen- 
tal results better). Furthermore, the fixed-point values of the coupling con- 
stants are not necessarily of the order of ,~-~. These peculiarities reflect the 
unphysical features of the incompressible turbulence~disturbances are 
propagated with infinite speed. Hence, we discard this choice. As we 
demonstrate in Section4, all these "diseases" disappear within the 
framework of near-incompressible turbulence. 
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APPENDIX B 

In this Appendix, we show 

20 -- f [ ~ ]  [~a]  [~v~] [ ~ ]  

xexp { << v ~ + ia~ ~, l~ >> + << ~b ~, h~ )> + << fi, y >> + << 6 ,1 ) )  } 

xexp {--f [k2"k~(k, w)fi(-k,-w)+mk~6(k, w)v~(-k,-w)]) 

x exp {- i  f (~ )  ~(k, w) ~(-k, -w)} 

= exp {f (-i)[k2+iw/v+bk2-im(v/w)k2]Vk~l~(-k'[k 4 + w2/v 2 + ck 2] w -w) l(k, w)} 

xexp ~+ (-i) [k4+w2/v2+ck2] w2 

x I(k, w) J(-k, -w)} 

{f  [k2-iw/v+bk2+im(v/w) k2]mVk~l~,(-k,-w)J(k,w)} 
x exp a k2"[k 4 + w2/v 2 + ck 2] w 

x exp { f ( -  i) [ k2 + iw/v + bk2-im(v/w )k2]mvk~' h~,( k, } 
k2n[k4 + w2/v  2 "Jr ck 2] w w)J(-k, -w) 

f .  [c(k 2 + iw/v) + (k 4 + w2/v2)( - -b  -'}- im(v /w) ) ]  k~k~ 
xexp t k2.[k4+w2/v2][k4+wZ/v2+ck2 ] 

x ha(k, w) l~(-k, -w)} 

x exp {f(--a)[ck2-b(k4+w2/v2)]k~'k# 
k2,,[k4+w2/v2][k4+w2/v2+ck2]/~(k, w) I~(-k, -w)} 

x e x p { f [ ( - i )  h~(k,w) l~(-k, -w)  l~,(k,w) l~,(-k, - w ) l )  
- ~ ( ~ - - - - T w ~ )  -Jr a k2 n 2(k4 + w2/p2) Jj~ (BI) 

where 

<<v~+ia(~,l~>>-f dd--~k dWl~(-k,-w)[v~,(k,w)+ia(~,(k,w)] (B2) (2re) a 2re 
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f = f  ddk dw and c = k 2 ( b Z + 2 b + m z v Z ) - 2 m  (B3) 
(27t) d 27z w 2 

The calculation is rather long and tedious. We will only outline the 
main ideas here. First, let us define 

va(k, w) = A~(k, w) + iBm(k, w); ~b~(k, w) = Ca(k, w) + iDa(k, w) (B4) 

~6(k, w) = E(k, w) + iF(k, w); 6(k, w) = G(k, w) + ill(k, w) (B5) 

Because the fields v~(x, t), ~b=(x, t), iS(x, t), and 6(x, t) are real, A~(k, w), 
C=(k,w), E(k,w), and G(k,w) are even under inversion. B=(k,w), 
D~(k, w), F(k, w), and H(k, w) are odd under inversion. Hence, the range 
of integration in the Fourier space has to be restricted. In the following, the 
integration symbol ~' reminds us that the integration is restricted to the 
half-space. It is easy to show that 

d 

Z o - f  I-I [@As(k, w)JU~Ba(k, w)J[~Ca(k, w)JU~Da(k, w)] 

x [~E(k, w)] [~F(k, w)] EgG(k, w)] E~H(k, w)] 

{ f '  ddk dw ~ }  (B6) 
x exp (27z) d 2~ 

~ - A a ( k ,  w)[ /a(-k ,  - w ) + / : ( k ,  w)] 

+ iBm(k, w)[/a(-k ,  - w ) - / a ( k ,  w)] 

+ Ca(k, w) 2a(k, w) + D~(k, w) Y~(k, w) 

+ E(k, w){ [ J ( - k ,  - w )  + J(k, w)] - 2ik2"kaDa(k, w)} 

+ F(k, w){i[J( - k, - w) - J(k, w)] + 2ik2"k~C~(k, w)} 

+ G(k, w) X(k, w) + H(k, w) Y(k, w) (B7) 

2~(k, w) = ia[l~(-k, - w )  +/a(k, w)] + [ha ( -k ,  - w )  + ha(k, w)] 

-2ik2+2"A~,(k,w) - 2k2" (~)B~,(k,  w) 

- 2ibk2nkak~A~(k, w) (B8) 

Ya(k, w) = - a[l~,(-k, - w ) - l : , ( k ,  w)] + i [ha ( -k ,  - w ) - h ~ ( k ,  w)] 

iw --2ik2+2"B~,(k,w)+ 2k2" (--~-) A~,(k, w) 

- 2ibk2"k~k~BB(k, w) (B9) 
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w 
X(k, w ) -  [ I ( - k ,  - w ) +  l(k, w ) ] -  2 i -  F(k, w) 

v 

+ 2imk~B~(k, w) (B10) 

Y(k, w)-i[I(-k,  - w ) - I ( k ,  w)] + 2i w E(k, w) 
Y 

- 2imk~A~(k, w) (Bll)  

Next, we integrate out G(k, w) and H(k, w). The trick is to insert a 
constant to generate the Gaussian integral: 

{f ' d~k dw(2~) a2rc } f [NG(k, w)] exp G(k, w) X(k, w) 

= 11 [NS(k,w)][NG(k,w)] 

x exp (2n) d 2n - ~ IS(k, w) - G(k, w)] 2 + G(k, w) X(k, w) 

- f INS(k, w)] exp 12 X ( w )  + S(k, w) X(k, w) 

(m2) 

{ lf'adkdW[s(k'W)--C(k'W)]2}2 (2~) d2~ (m3) N=(j  INS(k, w)] exp - 

where we have absorbed the constant N into the definition of the functional 
integration measure. We repeat this procedure until we integrate out all 
fields in the problem. We will then obtain the result in Eq. (B1). 

APPENDIX C 

We have 

- f ENfi ] ENd ] ENu~ ] EN~,b~ ] exp { ((u~,/~ )) 20 

+ <(r h~)) + (<fi, J))+ <(d, I))  } 

x exp { - f  k2"[ak2a=e+ek~k,]O~(k,w)~)e(-k,-w)} 

i w  . 
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f e ) 
~ - J  [k2"k~db~,(k, w)f i ( -k , -w)+mk~d(k,  w)u~,(-k , -w)]~ • 

xexp {f I v +  (_/)[k2+iw/v+bk2-im(v/w)k2]mv2k2 l _ ~ + _ ~ _ 2 . ~ 5 + c _ . _ ~ w  2 - 

x I(k, w) J ( -k ,  --W)} 

f {2[(a + e)/a] k 2-  (f/am)[k2+ iw/v + bk 2- im(v/w)k 2] } mvk~ 
x exp a k2'~[k 4 -t-- w2/v 2 + ck 2] w 

-k, -w) J(k, w)} • l~( 

xexp {I ( - i ) ,  [k2+kW~V[k+bk2-im(v/w)k2]mvk~+ w2/v z + ck 2-1 w h~(k ,w)J(-k , -w)}  

[c(k 2 + iw/v) + (k 4 + w2/v2)(-b + im(v/w))] k~k~ 
f x exp i k2nl-k 4 -4- W2/V 2 ] [ k  4 + W2/V 2 -1- ck 2 ] 

x h~(k, w)/~(-k, -w)} 

x exp {f( -- [ck2-(e/a)(k4+w2/v2)]k~'k~2.l~(k,w)l~(-k,-w)} 
a)k2'~[k4 -'t- W2/I )2 ] [k  4 + w2/v 2 -1--cK 3 

•  (-i)h~(k'w)'~(-k' -w) ,~(k,w),~(7~-w)]] " 
~ - ( ( ~ 7 ~  t-a k2 n 2(kaq_w2/v2) j j  

{ f [ m ( a + e ) - f ( l + b ) ] m v 2 k 4 j ( - k , - w ) J ( k , w ) }  (C1) 
x exp k2~[k4 + w2/v 2 + ck2] w2 

where 

((u~,, 1~,)) -= f dd---'-~k du---~l~,(-k, -w)  u~(k, w) 
(27z) a 2re 

f _ f  ddk dw 
(2~) d 2rt 

c-k2(b2+2b+m2Vw---7)-2m 

(c2) 

(c3) 

(C4) 
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We will not present the derivation of Eq. (C1) here. It is a standard 
Gaussian integral, u~(x, t), r t), ~(x, t), and 6(x, t) are real fields. 

In Eqs. (C1) and (B1), there is some ambiguity in the w integration, 
because some propagators have poles in the real w axis. We will put in 
some small imaginary part to avoid this singularity. The sign for this small 
imaginary part is chosen to be consistent with the hypothetical case where 

has a small diffusive part. See Eq. (3.36). 
The motivation for the above prescription can be understood as 

follows. In Eq. (2.10), the linear part of the equation for ~ contains only 
Ofi/~t. Since w has a dimension of A 2, it is likely that diverging counterterm 
of the form k2/~ will be generated. However, the equation of continuity 
(from the mass conservation law) has no such diffusive part. In order to 
ensure the renormalizability of the theory, we have introduced "extra 
operators" in Eq. (3.10). Indeed, e2~=NS will provide such a diffusive part 
for t~ in the counterterm action. Hence, our prescription in avoiding the 
singularity in the w integration can be regarded as a limiting case of a 
larger theory where the percentage density fluctuation, i.e., /~, has a dif- 
fusive part in the renormalized equation of motion. 

A P P E N D I X  D 

In this Appendix, I list all the integrals appearing in the calculation of 
the self-energy and the vertex corrections, at the one-loop level. I use 
dimensional regularization and I write only the leading pole term. From 
Eq. (D1) to Eq. (D7), e = 4 - d .  From Eq. (DS) to Eq. (D13), e = 6 - d .  

f ddk (k~ + q~)(k~ + q~) 
(2re) d (k + q)2 [k 2 + (k + q)2 + iw/v] 

( d dk k~,k B 
3 (2~) a k2[k 2 + (k - q)2 + iw/v] 

(4rc)~'~'l 1 [ ~ 2 l i w 6  1 l~+-f~q~q~ 

f ddk k~(k~ + q~) 
(2g)dk2[k 2 + (k + q)2 + iw/v] 

( dak (k~-  q~) k~ 
J (2~z) d (k -- q)2 [~-~ + (~---~)2 + iw/v] 

-- 1 1 [ _ 1-~ S_-2-1iw -gq~q/3]l (D2) 
~ 
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f ddk (k~, + q~,) 
(27c) d (k + q)2 [k 2 + (k + q)2 + iw/v 

[" ddk k~ 

J (2~) d k2[k 2 + (k - q)2 + iw/v] 

"~ (4rc)2 ~ q~' 

f dak (k.+q~) 
(2n) a k2[k 2 + (k + q)2 + iw/v] 

f dak k~ 
J (2~z) d (k - q)2 [k 2 + (k - q)2 + iw/v] 

f dak 
(2re) a 

(4n)2 "~" qu 

k~,(k, + q,) 
kZ(k + q)2 [k 2 + (k + q)2 + iw/v] 

1 
"~ ( 4 ~ ) :  

dUk 1 
(2n) d k2[k 2 + (k + q)2 + iw/v] 

f ddk 1 
J (2n) d (k - q)2 [k 2 + (k - q)2 + iw/v] 

1 1 
. . . .  [ 1 ]  (4~) 2 

ddk k~kb 

Liao 

(D3) 

(D4) 

(D5) 

(D6) 

(27t) d (k + t) 2 [k 2 + (k + u) 2 + iE/v] [k 2 + (k + v) 2 + iF/v] 

1 1 

f ddk (k~ + q~)(k~ + q~) 
(2~) a (k + q)4 [k 2 + (k + q)2 + iw/v] 

_ f ddk k~k~ 
(2=)d k4[k 2 + (k __q)2 + iw/v] 

1 1 l q~q~]  
(47Z) 3 _ . I  lq23~,~ l iw 

(D7) 

(D8) 
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f dak k~(k~ + q~) 
(2n) d k4[k 2 + (k + q)2 + iw/v] 

= f ddk (k s - q ~ )  k~ 
(2~) a (k - q)4 [k~+ ~ - - ~ 2  + iw/v] 

liw' -1 1 
(4~)~7- - q ~ a ~ - ~  v ~ - 1 6  q~qe 

f ddk (k~+q~) 
(2n) a (k + q)4 [k 2 + (k + q)2 + iw/v] 

= f ddk k~ 
(2n) a k4[k 2 + (k - q ) 2  + iw/v] 

(4n)~ e q~ 

f dak (k~+q~) 
(2n) d k4[k 2 + (k + q)2 + iw/v] 

= f ddk k~ 
(2n) d (k _q)4 [k 2 + (k _q)2 + iw/v] 

"~ (4n) 3 e qu 

f ddk kakb 
(2n) d (k + t) 4 [k 2 + (k + u) 2 + iE/v] [k 2 + (k + v) 2 + iF/v] 

(D9) 

(D10) 

(Dl l )  

(D12) 
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